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Abstract 

The minimum strategy for distinguishing enantiomorphs by 
dynamical diffraction is determined. It is found that, in the 
absence of anomalous dispersion, it is possible to determine 
the absolute hand of an enantiomorphic crystal by three-beam 
dynamical X-ray or electron diffraction in a general orientation 
only if a fourth noncoplanar reciprocal-lattice point can be 
identified. Three-beam dynamical diffraction alone is unable 
to distinguish enantiomorphic forms. Identification is possible 
using four or more dynamical beams, in general, unless all 
relevant structure factors lie on a plane in reciprocal space 
passing through the origin. Supporting computations are given. 

It has recently been suggested that, because of the ambiguity 
in the sign of indices, N-beam X-ray multiple scattering 
conditions do not allow enantiomorphs to be distinguished in 
the absence of anomalous dispersion (Shen & Colella, 1986). 
By contrast, Hummer, Weckert & Bondza (1989) and Chien, 
Tang & Chang (1989) have recently claimed to determine 
the hand of crystals using experimental three-beam X-ray 
measurements. The purpose of this note is to show that 
three dynamical beams alone are not sufficient to distinguish 
enantiomorphs in the absence of dispersion (or 'absorption' for 
electron diffraction), whereas four or more beams may be used 
for this purpose. We are concerned only with the predictions of 
exact many-beam theory without dispersion; structure factors 
therefore satisfy F 9 = F_*g. 

For a crystal A with charge density p(r), we define crystal 
B with p'(r) = p(-r)  as the enantiomorph of A. Crystal B 
is then defined to be in the 'same' orientation as crystal A; its 
structure factors are the conjugates of those of A and lie on the 
same lattice (see Fig. 1). As a consequence of Friedel's law, 
kinematic X-ray and electron diffraction patterns are therefore 
insensitive to the hand of crystals. The center of symmetry in 
these patterns results in an ambiguity in sign for all indices, 
reflecting the loss of information on hand. This information 
is recovered under certain multiple scattering conditions, since 
multiple scattering renders the diffracted intensities sensitive to 
the phase of the structure factors. As shown in Figs. 1 (a) and 
(c), crystal B may be brought into a mirror relationship with 
(but not into coincidence with) crystal A by twofold rotation. 

Since most enantiomorphic crystal pairs belong to the 
same space group (e.g. P213 for FeSi), general methods for 
distinguishing space groups by electron diffraction (Eades, 
1988) are not useful for distinguishing enantiomorphs, except 
for those cases where pairs have different space groups (i.e. 
for one of the 11 enantiomorphic space groups that contain 
screw axes of one hand only). For the other space groups, 
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additional symmetry elements (centers of symmetry, mirrors) 
make p' (r) = p(r) so that distinct enantiomorphs do not exist. 
It has been known for many years that X-ray diffraction 
patterns affected by anomalous dispersion may be used to 
determine hand (DeVries, 1958). Then, the absorptive part of 
the optical potential results in intensity differences between 
conjugate reflections. In the electron diffraction literature, 
examples of the determination of hand using multiple scattering 
are given by Goodman & Secomb (1977) for dextrorotatory 
quartz and Tanaka, Takayoshi, Ishida & Endoh (1985) for 
MnSi. Depending on crystal thickness and beam energy, 
transmission electron diffraction patterns may show single 
scattering, multiple scattering without absorption or multiple 
scattering with absorption. 

In general, an enantiomorphous pair A and B are 
distinguishable by dynamical diffraction if, for one orientation 
of A, no orientation for B exists that generates the same 
diffracted intensities produced by crystal A. The hand of a 
particular sample of known structure but unknown hand can 
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Fig. 1. Reciprocal lattices for enantiomorphs (a) A and (b) B generated 
by inversion. The geometric lattice has inversion symmetry. (c) B 
rotated by 180 ° about a horizontal axis. (d) Rotation of B about a 
vertical axis. (a) and (c) are related by mirror symmetry (BM). (a) 
and (d) have identical ZOLZ structure factors and projections along l 
(BP). The relationships do not depend on the use of orthogonal axes. 
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then be determined uniquely from a given experimental pattem 
by comparing experimental and calculated intensities for the 
two forms if the differences exceed experimental errors. The 
existence of a single orientational relationship between A and 
B that gives identical dynamical intensities is sufficient to 
establish the indistinguishability of the enantiomorphs. We now 
consider in detail the four orientations of crystal B shown in 
Fig. 1 that produce patterns most similar to those of A. 

Fig. l(a) shows the reciprocal lattice for an enantiomorph 
A, weighted by complex structure factors Zi, with beam 
direction K in a general orientation. 'Same' (B), 'same' with 
reversed beam (B, - K ) ,  mirror (BM) and projection (BP) 
orientational relationships for crystal B are also shown. The 
dynamical diffracted intensities depend (ideally) only on the 
complex structure factors and beam direction for crystals of 
equal thickness. The B form shown in Fig. l(b) is generated 
equivalently by reversing the signs of all atom coordinates, 
conjugating structure factors or inverting the Z~ through the 
origin. Since the inversion of the three complex points Z~ 
reverses their hand and since the complex lattice does not 
possess a center of symmetry, no rotation of them can bring 
them into coincidence with points in A's lattice. In general, 
then, provided these three points and the origin do not lie in 
a plane, four-beam dynamical diffracted intensities will always 
distinguish enantiomorphs in principle. Four noncoplanar points 
are the minimum number needed to distinguish the hand of 
objects in real or reciprocal space (the definition of left and 
right is arbitrary); three-dimensional dynamical diffraction then 
preserves the hand of an object. 

That three-beam interactions are insufficient to distinguish 
enantiomorphs follows immediately from the projection 
theorem and from symmetry. Any three reciprocal-lattice points 
(including the origin) define a plane, onto which the structure 
may be projected. As shown in Figs. 1 (a), (b) and (d), a rotation 
of B by 180 ° about any common axis l brings the zero-order 
Laue zone (ZOLZ) (l = 0 plane) into coincidence with A, 
so that the structures may not be distinguished using these 
reflections alone. The projections of the real-space structures 
onto this plane are identical. Given experimental intensities 
from a crystal of known structure but unknown hand, it is 
impossible to determine whether one has the right-handed 
form in orientation A or the left-handed form in orientation 
BP, regardless of the number of dynamically interacting 
beams in the zero-order Laue zone. As was understood at an 
early stage in electron diffraction, three-dimensional dynamical 
interactions are required in order to distinguish enantiomorphs 
(Goodman & Secomb, 1977). 

We note that the kinematic intensities from the orientations 
shown in Figs. l(a) and (b) are identical, whereas [contrary 
to previous work (Shen & Colella, 1986)] we find that the 
three-beam dynamical intensities (Z1, Z~, 0, K) in Fig. l(a) 
and (Z~, Z~, 0, K) in Fig. l(b) differ, owing to the reversal in 
sign of the three-phase invariant ~ [see Marthinsen (1993) for 
details]. Both the Kambe and the Bethe approximations give the 
(incorrect) result that the three-beam intensity is independent 
of the sign of the three-phase invariant g~. The approximations 
of Bird, James & Preston (1987) show a dependence on 
sing r. Exact computations show that three-beam dynamical 
intensities are sensitive to the sign of ~P, which may therefore 
be determined (Marthinsen, 1993). Dynamical interactions are 
therefore necessary to distinguish these possibilities. Instead of 
crystal A in the orientation of Fig. 1 (a), one might unwittingly 
be dealing with crystal B in the B P  orientation. Then, the 
three-beam intensities are identical; however, the position of 

the higher-order Laue zone (HOLZ) reciprocal-lattice point 
Z3 distinguishes these arrangements. Only the position of this 
lattice point need be identified. A rotation axis may lie normal 
to the plane containing the reflections used. For a two- or 
fourfold axis along l, all structure factors in the ZOLZ normal 
to this axis are real and the projection is centrosymmetric. The 
three-beam intensities using Z1, Z2 and (000) in Figs. l(a) 
and (d) remain identical but can no longer be distinguished 
by the position of the lattice point Z3 because of the point 
Z~ (shown dashed in Fig. ld) generated by symmetry. Then, 
four-beam interactions, which are sensitive to the phase of Z3, 
are required to distinguish the enantiomorphs. 

By reversal of the beam direction and rotation of the B 
crystal and beam about a horizontal axis, the mirror-related 
arrangement B M  is created (Figs. la, b and c), since the 
inversion operation is equal to a twofold rotation followed by 
a mirror. Thus, three-dimensional zone-axis convergent-beam 
electron diffraction patterns from a pair of enantiomorphous 
crystals can be obtained that are mirror-related, as shown 
experimentally by Tanaka & Terauchi (1985). 

It is necessary to reconcile these results with theoretical 
predictions for few-beam X-ray and electron diffraction and 
to estimate their magnitude. The X-ray literature is reviewed 
by Chang (1987) and the electron literature by Spence & Zuo 
(1992). We have therefore _performed four-beam dynamical 
computations for the Z~ = 111, Z2 = 035 and Z3 = 3714 
reflections of two enantiomorphs of cubic FeSi (space group 
P213). The relative positions of these reflections are given 
very approximately by Z1, Z2 and Z3, respectively, in Fig. 
l(a). We define the A form by an Fe atom at z = y = z = 
0.1358 and an Si atom at z = y = z = 0.844 with respect 
to a right-handed orthogonal coordinate system. The B form 
was created by reversing the signs of all atom coordinates. 
We use the exact results of the Bloch-wave formulation of the 
dynamical diffraction problem without absorption (Marthinsen, 
1993) for transmission convergent-beam electron diffraction at 
73 kV. The intensity of beam h in electron diffraction for a 
thin slab of noncentrosymmetric crystal of thickness z without 
absorption is 

Z.(z) E E ," , J 5" -- [C~ C~,CdCh l exp[ (~ / ' - ' r J )z+qoq] ,  (1) 
i 3 

while the corresponding expression for the electric displace- 
ment field D in X-ray diffraction is of similar form (Pinsker, 
1978): 

IDh(z)l 2 = E E l  ' ~" , 5" (Do~Do~ + Do,~Do.) 
i j 

• i o j 
x(D~,*,,Dd,, + Dh,~Dh~) 

x exp[2~(,'  - -yJ)z + ~o'~l I- (2) 

Here, o" and 7r are orthogonal unit vectors specifying the 
directions of polarization, while cp ij is the phase of the 
eigenvector. The effect of enantiomorphism is to conjugate 
the eigenvectors of the dispersion equations C~ (D ~) but leave 
its eigenvalues O ,i unchanged (Marthinsen, 1993). In general, 
this can lead to large changes in intensity for the 'same' 
orientation of the two enantiomorphs. Fig. 2(a) ('A above') 
shows two-dimensional rocking curves for the A form around 
the simultaneous Bragg conditions (which occur at the center 
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of every disc) for the four reflections. Fig. 2(c) shows the 
B form for the 'same' orientation as Fig. l(a) ( 'B  above'). 
Fig. 2(b) shows the B form as for Fig. l(c) but with reversed 
beam direction ( 'B below'). Fig. 2(d) shows the A form as 
for Fig. l(a) with reversed beam ('A below'). We note the 
small differences in the 111 discs in Figs. 2(a) and (c). The 
equations appear to predict the same dynamical intensities for 
Figs. 2(a) (A above) and (b) (B below). The three-dimensional 
arrangement of reciprocal-lattice points (see Fig. 1), however, 
shows that the patterns are in fact mirror-related, as shown. 
According to (1) and (2), similar symmetries and differences 
will be observed in X-ray diffracted intensities although, for 
experimental reasons, these data are not normally presented in 
the same way. 

The sensitivity of the method depends on the diffraction 
conditions and particular reflections used. Sensitivity is greatest 
when the three-phase invariant is close to 90 °. Many 
other experimental uncertainties may influence these general 

predictions, particularly in X-ray work. Data may be collected 
in different ways, the effects of crystal thickness may be 
incorporated differently and computer programs may make 
different approximations. As a practical matter, it is probably 
impossible to find a rotation axis about which to collect 
angle-integrated X-ray data for four simultaneous noncoplanar 
reflections except in very special cases. Thus, for X-rays, 
the only method requires three dynamically interacting beams 
together with the relative orientation of a fourth noncoplanar 
indexed reflection. 

In summary, we find that the minimum strategy for 
identifying hand by dynamical diffraction requires the indexing 
of four noncoplanar reflections, three of which (at least) must 
show observable dynamical interactions. These three should 
not lie in a plane normal to a symmetry axis. 

JCHS acknowledges support from NFR-NAVF and from 
NSF award DMR-9015867. 
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Fig. 2. Computed four-beam diffraction 
patterns from enantiomorphs A and 
B of FeSi at 73kV with beam 
directions K ('above') and - K  
('below'). (a) A above. (b) B below. 
(c) B above. (d) A below. The 
reflections Zl = i l l  7,2 = 035 
and Z3 = 344 shown in Fig. 1 
are used. Here, (a) and (c) show 
slight differences in [1] owing to 
the change in the sign of the phase 
invariant. Note that (a) and (b) [and 
(c) and (d)] are mirror-related. 
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Abstract 

Several general properties of maximum-entropy maps are 
reviewed that substantiate previous results from selected 
applications. In particular, the maximum-entropy method 
(MEM) is depicted as a smoothing scheme and the intrin- 
sic bias introduced by this procedure is pointed out. It is 
argued that the MEM is not well suited for accurate 
charge-density mapping. 

1. Introduction 

In a previous note (Jauch & Palmer, 1993; hereafter refer- 
red to as paper I), several unsatisfactory features of the 
maximum-entropy method (MEM) have been found 
empirically. The observed peculiarities can be traced back 
to general properties of MEM images, which were deduced 
earlier in the field of astronomy (Nityananda & Narayan, 
1982; Narayan & Nityananda, 1986). These results have 
remained unnoticed in the crystallographic literature. As 
there is a growing interest in using the MEM in charge- 
density studies (e.g. Kumazawa, Kubota, Takata & 
Sakata, 1993), some aspects relevant to this context will be 
pointed out in the present note. 

2. A smoothing scheme 

Entropy maximization was originally introduced (Jaynes, 
1957) as a plausible scheme for constructing probability 
distributions: from the set of all distributions compatible 
with the available information, the one that maximizes 
Shannon's entropy is chosen. Well known properties and 
familiar special cases of probability distributions can thus 
be generated by a unified variational treatment. Via an 
axiomatic approach, Shore & Johnson (1980) have estab- 
lished that the maximum-entropy criterion is the only 
consistent way to determine an underlying probability 
distribution. 
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When applied to nonprobabilistic problems, the con- 
ceptual foundations for the choice of entropy maxi- 
mization become controversial. Here, it has been argued 
that the MEM is to be preferred solely on grounds of 
consistency, without the corresponding map being more 
likely than others (e.g. Livesey & Skilling, 1985). A differ- 
ent view rests on the belief that the MEM map must 
correspond to the most probable one (e.g. Gull & Daniell, 
1978). Electron-density reconstruction from incomplete 
Fourier data represents an example where the MEM is 
used as a statistical analogue for the evaluation of a 
continuous function that happens to be restricted to non- 
negative values, thus allowing a formal identification with 
a probability distribution. From a pragmatic point of view, 
the ME principle can be interpreted as a smoothness 
criterion. Following Titterington (1985), MEM image 
reconstruction is then regarded merely as one particular 
case of a very general scheme aiming at a compromise' 
between smoothness and agreement to the data (X 2 devia- 
tion), the relative weight between the two being adjusted to 
yield a desired value of X 2. 

In actual practice of the MEM, the local contribution 
to the smoothness functional is chosen as h(px) = 
-p , , ln  (px/rx),  where px represents the calculated scat- 
tering density located at x and r,, denotes the prior distri- 
bution. For the usual assumption of a uniform prior, the 
local contribution reduces to - p x l n  p,,. Nityananda & 
Narayan (1982) have shown that, in the context of incom- 
plete Fourier image reconstruction, the detailed form of 
the smoothness functional is not critical but can be chosen 
rather arbitrarily as long as certain general restrictions are 
satisfied. Of crucial importance are the signs of the second 
and third derivatives of h(p~) with respect to p,,: 
h"(px) < 0 (required for the uniqueness of the solution) 
and h"'(px) > 0 (necessary sign for nonlinearity in order to 
generate nonzero Fourier coefficients of higher orders). 
This contrasts with the view according to which MEM 
maps are 'better' than all other maps. In fact, the above 
authors have even recommended that the entropy 
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